Maximize System Performance with High-Bandwidth Memory:
HBM2 Hardened PHY Solution on TSMC 7FF

Need lower power?
Need more bandwidth?
eSilicon has complete high-bandwidth memory solutions from PHY IP, ASIC, interposer and package design through manufacturing.

This data sheet excerpt describes the features and characteristics of the hardened HBM2 PHY solution developed on TSMC 7FF technology. For a complete data sheet, contact sales@esilicon.com.

Introduction
High-bandwidth memory achieves higher bandwidth while using less power in a substantially smaller form factor than DDR4 or GDDR5. At 14/16nm, HBM addresses the bandwidth gap with up to 256 GB/s data rate per memory at 2Gbps pin speed. At 7nm, the pin speed increases to 2.4Gbps with bandwidth up to 307GB/s. The HBM2 PHY interface features eight independent channels using a total of 1024 data pins. With support for 2, 4, or 8 HBM2 stacks, the density of signals, coupled with interposer design, requires careful design, thorough timing analysis and validation. eSilicon’s HBM2 PHY is a complete, validated hardened IP that is ready for chip integration.

eSilicon’s 2.5D/HBM2 is first to production with a comprehensive 2.5D solution that includes eSilicon’s HBM2 PHY, interposer and systems in package (SIP) design; volume manufacturing, assembly and test; and complete 2.5D/ HBM ecosystem management.

HBM2 SoC Subsystem Benefits
• Plug & play: with hard macro and built-in clock control there’s no lengthy timing closure and physical design
• Custom design for optimized timing and area
• Rich set of built-in features
• Flexible: minimum dependence on controller features
• Signal integrity: custom routing scheme used on interposer to significantly minimize crosstalk, skew and ISI jitter

• Maximum timing margin: PHY includes training, calibration and VREF programmability features
• DFI and IEEE1500 compliant
• APB interface enables CPU override of built-in training, repair, calibration and low-power mode

PHY
The PHY has been developed to the JEDEC JESD 235A specification on TSMC 7FF technology.

It supports up to 307.2Gbytes/sec bandwidth with 8x128b channels at 2.4Gbps per I/O.

The PHY is DFI 4.0 compliant with several controller-independent features such as:
• READ/WRITE/CK strobe training
• READ leveling training
• I/O calibration
• Lane repair
• Independent programmable control/status registers (CSRs) via APB or IEEE1500 interface
• MISR test

Integrated I/O
• The I/O supports up to 2.4Gbps DDR operation across a 4mm interposer channel
• Clock speeds up to 1.2Ghz
• Calibrated output current programmable
• Junction operating temperature -40°C to 125°C
• Complies with ESD requirements
• Supports flip-chip assembled SoC device, I/O interfaces to a micro-bump technology
• 1.2V I/O voltage +/-5%
• 0.75V, 0.8V, 0.9V core voltage +/-10%
System Integration
Since 2011, eSilicon has been conducting research to develop products and processes that deliver a complete HBM solution. With production 2.5D packaged silicon, eSilicon offers a unique and powerful advantage, delivering the next step of integration, cost reduction, system power management and increasing and integrating system bandwidth by offering a complete HBM solution. It includes IP (PHY, DLL, I/O); Northwest Logic memory controller; ASIC design; SiP design; manufacturing, assembly and test; and complete 2.5D/HBM2 ecosystem management.

Interposer Design
Silicon interposers provide an optimal integration platform:
- Excellent thermal expansion matching
- Increased signal speed due to shorter interconnects with a smaller form factor
- Reduced RLC parasitics, power, and ESD requirements

This silicon interposer technology platform is based on several enabling process modules and unit process capabilities.

eSilicon interposer design and implementation capabilities:
- Through-silicon via (TSV) system design and wiring analysis
- TSV assembly (chip-to-wafer bonding, temporary bonding/debonding, etc.)

Interposer Design
Silicon interposers provide an optimal integration platform:
- Excellent thermal expansion matching
- Increased signal speed due to shorter interconnects with a smaller form factor
- Reduced RLC parasitics, power, and ESD requirements

This silicon interposer technology platform is based on several enabling process modules and unit process capabilities.

eSilicon interposer design and implementation capabilities:
- Through-silicon via (TSV) system design and wiring analysis
- TSV assembly (chip-to-wafer bonding, temporary bonding/debonding, etc.)

PHY Feature | Specification
--- | ---
Data Rate | 0.1-2.4Gbps per I/O
Channels | 8 independent channels
Self-Refresh | Supported through memory controller
I/O per Channel | 212
Channel Bandwidth | Up to 307GB/s
Data I/O | 1024 (128 per channel, 8 channels and 16 pseudo channels)
ECC | ECC and parity support in conjunction with the controller. (ECC on DM signals)
Data Byte Invert (DBI) | DBI supported in conjunction with the controller
Data Mask (DM) | DM supported in conjunction with the controller
RAS Support | RAS supported in conjunction with the controller
Cycles/Command | 1 cycle (exception is Row Activate at 2 cycles) per JEDEC specification
Interoperability Testing | Supports any third-party DFI 4.0-compliant memory controller vendor
IEEE1500 Support | Separate IEEE1500 port for direct access to the memory stack and PHY
Impedance Calibration Sharing | Self-contained calibration per PHY instance across all eight channels
Related Signal Pass-Through | Provides ability for signals not related to PHY to be passed through
Power-Down Modes | IDDQ MODE and dynamic power-down of receivers during WRITE
Temperature Range (Tj) | -40C to 125C
Voltage-Level Target | VDD (logic supply) at circuit: 0.675V - 0.99V
I/O supply voltage – at die level 1.2V (+/-5%)

Contact & Online Access
Please contact eSilicon at sales@esilicon.com for more information, silicon quality results, white papers or complete data sheets.

All eSilicon IP is available in IP Navigator at https://star.esilicon.com, our online IP exploration tool. Navigator provides access to eSilicon’s full portfolio of IP products. Memory instances may be generated, analyzed and downloaded. Power, performance, and area (PPA) data is pre-loaded for easy data comparison and analysis.

Resources
Our newest HBM white paper, co-authored with SK Hynix, Amkor Technology, Northwest Logic and Avery Design Systems, is available online: Start Your HBM/2.5D Design Today.

You may also be interested in our Advanced ASIC Video Series:
- What is High-Bandwidth Memory (HBM2) and 2.5D Packaging?
- What is a TCAM?
- Where is a TCAM Used in an ASIC?